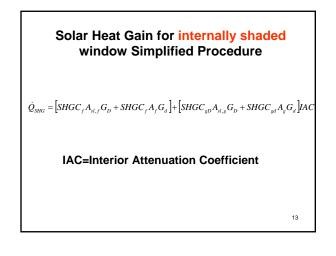
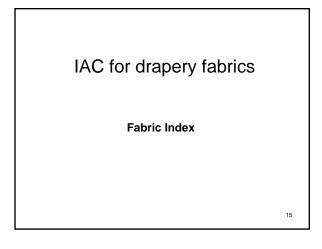


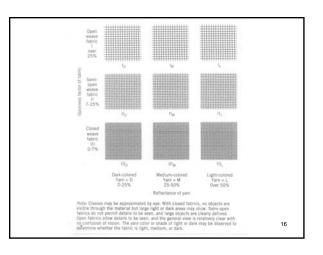
Instantaneous heat gain due to a
fenestration (Window)
Neglecting the frame effect
$$\dot{Q}_{SHG} = SHGC_{g,D}A_{sl,g}G_D + SHGC_{gd}A_gG_d$$



	0	uting Typeson		-	Ge	her of 1	Charles Annual		ertias		10.1	lar das	Decision Other Frame		No.	of back	inen i
	These These, 101 mmin	Cont One F,	ing i]:	1	1	1	ş	1	íl	Cuerada	1	1	1	1	1	1
	Te 1 - 15		- 1117	1.65			-	-		1.16			11.04				
Table 11.3			1	0.05	1.42	1.00	11.78 11.74 11.74	825	4.10	0.75							
	a 4 - 0.	8. 646.	A SEC	1.10	3.62	10.01	8.23 6.85 6.11	1.04	14.29	0.75			4.40 1				
	(in) - (in	C (14	A SEC	1.18 1.21 1.05 1.08	0.11 0.11 0.42 0.87	1.14	8.19 8.84 8.15 8.12	5.19 8.23 5.46 6.23	8.17 8.34 8.37 9.45	0.17 0.45 0.56 0.12	0.04	147	1.14.3	1	60 G	1.00	697 1
	54 m	2 0.14	N. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	120	8.31 9.39 9.40 9.88	120	10.00	6.31 9.48 8.72 9.34	6.7F 6.7F 6.2F 6.2F	825 834 840 840	-	114					22
	+ 1 - 14		A 102	1.8	0.49 0.29 4.78 0.21	12	8.52 9.63 8.62 8.62	8123 8143 8121	111	0.48 0.63 0.57 0.17	142	244			24.12	1. 1.1	an)
	1. s	4.16	AF MARK	1.00 1.47 1.35 1.07	122	8.34 9.96 9.42 9.07 8.07	5.77 6.55 6.56 5.11	10 64 63 50	4.3 4.28 4.28 5.42	4.11 4.34 6.40 8.10	10	3.16	1.0.3	9.3	1.1	6.63	0.00
	41.14	- 44	ALL AL	0.19 0.81 0.06 0.08	1.27	1.44 1.70 1.08	0.61 8,74 8,17 6,12	8.21 A.21	12,72 0.24 0.64 0.64	1.42 1.15 1.11 1.11	442	-	8.52.5	H 4	12 4.1	1.14	1.04
	14 A 14	5.00	R. 174	1111	1.42	4.17 4.87 8.87 9.07	8.71 9.76 9.29 9.35	11.24 11.24 11.29 11.29	0.3# 0.1# 0.41 0.41	6.22 6.28 6.29 6.29 6.29	1.17	1.14	1.44 10	12 (4	N	(1)	1.41
	i a ab	and all	12-26	0.02 0.00 0.00 0.00	1.15	107	2.54 5.40 0.11 0.11	1.46 1.23 1.21 1.21	535 629 841 645	8.57 8.42 6.11 8.11	4.11	8,97	*** *	14 T		1 6.17	222
	Reflective Ringle (Deline	-														
		A CLASS. LOS	1000 1 1	11.00	0.17 0.00 0.34		1.11	124	1.11	0.11	1.15	1.18	119 1	17.3	07 N.S	1.14	Chief.

					Center-of-Glazing Properties						Total Window SHGC at Normal Incidence				Total Window T ₂ at Normal Incidence				
		Glasing System					Incid	lence.	Angles			Alur	dnem		her	Alm	nisum		ther
10		Thick_		Center Glaring T,		00.00	50 D0	00.00	10,00	10.00	Bentis, Diffuse	Operable	Their	Operable	Tuel	Operable	David	Operation	Ind
L'és:	sated Si	ingle Glating			Noemal 0.00			-		-		-		-	-	-		-	
1s	3	CL.H	0.00	SHOC	0.65	0.64	0.82	12.78	11.67		0.78	0.73	-0.78	0.64	0.75	6.77	-0.50	0.66	41.75
				T	0.83	0.82	0.80	0.75	0.64	0.35									
				10	0.01	0.01	0.10	0.14	0.25	0.51	0.14								
				11+	0.08	0.0%	0.10	0.14	0.25	0.51									
				36	0.09	0.10	0.10	0.11	0.11	0.11	0.10								
in.	6	CLE	15.818	SHOC	0.81	0.80	0.76	0.73	0.67	0.79		0.71	0.74	0.60	15.71	11.78	6.79	11.64	0.77
				T	0.88	0.87	0.85	0.80			0.80								
				11	0.08	0.09	0.11	0.15	0.27	0.51	0.14								
				100	0.08	0.09	0.11	0.15	0.27	0.51	0.14								
				×	12.14	0.17	0.18	0.15	0.19	0.17									
+c	3	88.2	0.6.8	SHOC	0.73	0.71	0.68	0.64	0.54	0.34	0.65	0.64	0.67	0.54	0.64	0.10	0.61	0.50	11.71
				1	0.65	0.63	0.59	0.15	0.44	0.27	0.56								
				111	0.09	10.07	0.08	0.12	0.22	0.45	0.12								
				20	0.06	0.07	0.08	0.12	0.22	0.45	0.12								
				35	0.29	0.11	0.32	0.11	0.11	0.29	0.31								
14	6.	4342	0.54	SHOC	0.62	0.50	0.57	0.51	0.45	0.29	0.54	0.54	0.56	0.25	0.54	0.45	0.48	1.74	0.47
				T	11.419	0.45	0.43	0.39	0.32	0.18	0.41								
				267	0.05	0.05	0.07	0.11	0.19	0.42	0.10								
				R*	0.05	0.68	0.66	0.62	0.53	0.11	0.00								
				14	0.46	0.49	0.50	0.51	11.49	0.41	0.48								
$l\pi$	3	GRN	10.82	SHOC	11.70	0.68	0.66	0.62	0.53	0.33	0.63	0.6.2	0.64	0.52	0.61	0.70	0.71	0.60	0.71
				7	11.61	0.58	0.56	0.52	11.4.3	0.25	0.53								
				#f.	0.05	0.07	0.08	0.12	0.21	0.45	0.11								
				11	90.06	0.07	0.08	0.12	0.21	0.45	0.11								
				A	0.33	0.55	0.36	0.37	0.36	0.51	0.35								
10	6	GRN	0.76	SHOC	0.60	0.58	0.56	0.52	0.45	0.29	0.54	0.53	0.55	0.45	0.53	0.65	0.68	0.55	0.64
				1	0.47	0.44	0.42	0,38	8.32	0.1%	0.40								
				Nº.	0.05	0.05	0.07	0.11	0.20	0.42	0.10								
				R^+	11.05	0.06	0.03	0.11	0.20	11.42	0.10								
				M	0.47	0.50	0.51	0.51	0.49	8.40	0.49								
12	3.1	GRY	0.62	SHOC	0.70	0.68	0.66	0.61	0.53	0.33	0.63	0.62	0.64	0.12	0.61	0.52	0.91	0.45	0.54
				T	16.01	0.58	0.56	0.51	0.42	0.24	0.53								100
					0.06	0.07	0.08	0.12	0.21	0.44	0.11								
				44	0.06	0.01	11110	0.12	6.24	6.44	10.11								


Surface	Absorptance	
Brick, red (Purdue) ^a	0.63	
Paint, cardinal red ^b	0.63	
Paint, matte black ^b	0.94	
Paint, sandstone ^b	0.50	
Paint, white acrylica	0.26	
Sheet metal, galvanized, newa	0.65	
Sheet metal, galvanized, weathereda	0.80	
Shingles, aspen grayb	0.82	
Shingles, autumn brown ^b	0.91	
Shingles, onyx black ^b	0.97	
Shingles, generic white ^b	0.75	
Concrete ^{a,c}	0.60-0.83	
Asphalt	0.90-0.95	
Grassland ^d	0.80-0.84	
Deciduous forest ^d	0.80-0.85	
Coniferous forest ^d	0.850.95	
Snow, fresh fallen ^c	0.10-0.25	
Snow, old ^c	0.30-0.55	
Water, incidence angle 30°	0.98	
Water, incidence angle 60°	0.94	
Water, incidence angle 70°	0.87	
Water, incidence angle 85°	0.42	



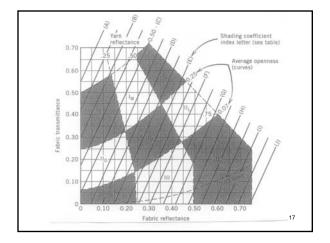

т	Nominal hicknew ^a ch Pane, in		ng Solar mittance Single or	Glaring	Vesician	Blinds		Holler Shi	idei
Glazing System ⁴ Ea Single Glazing Systems Clear, residential Clear, commercial				Charles					
Clear, residential Clear, commercial			Ismir Paoe		Medium	Light	Opaque Dark	Opagar White	Transluces Light
	1.24		0.87 to 0.80	0.86	0.752	0.684	0.82	0.40	0.45
"least mattern	2 00 4		0.80 to 0.71	0.82					
	1 10 1		0.87 to 0.79						
Tisted	1.1		0.74, 0.71						
Above glazings, automated blinds' Above glazings, tightly closed vertical blinds. Heat absorbing?	505 1995		0.46	0.86 0.85 0.59	0.64 0.30 0.84	0.59 0.26 0.78	0.66	0.44	0.47
Reflective coated glass			0.45	0.26 to 0.52		0.75	0.66	0.44	0.47
Duable Glazing Systems [#] Clear double, residential	4	0.87	0.87	0.75	0.714	0.664	0.81	0.40	0.46
Clear double, commercial		0.80	0.80	0.70					
Heat absorbing double? Reflective double	1	0.46	0.80	0.47 0.17 to 0.35	0.72 0.90	0.66	0.74	0.41	0.55
Other Glasings (Approximate) Range of Variation ^b					0.83 0.15	0.77 0.17	0.74 0.16	0.45 0.21	0.52 0.21

Table 11.5 IAC for an internally shaded window with

٦

	Glass Trans-	Glazing SHGC	_				L	IAC F G H I				
Glazing	mission	(No Drapes)	A	В	C	D	E	F	G	H	1	1
Single glass												
1 in. clear	0.86	0.87	0.87	0.82	0.74	0.69	0.64	0.59	0.53	0.48	0.42	0.3
$\frac{1}{4}$ in. clear Reflective coated	0.80	0.83 0.52	0.84 0.95	0.79 0.90	0.74	0.68	0.63	0.58	0.53	0.47	0.42	0.3
Insulating glass, $\frac{1}{4}$ in.		0.35	0.90	0.88	0.85	0.83	0.80	0.75	0.73	0.70	0.68	0,6
air space $(\frac{1}{8} \text{ in. out})$ and $\frac{1}{8} \text{ in. in}$	0.76	0.77	0.84	0.80	0.73	0.71	0.64	0.60	0.54	0.51	0.43	0.40
Insulating glass, ¹ / ₂ in. air space												
Clear out and clear in Heat-absorbing out and clear in Reflective coated	0.64 0.37	0.72 0.48		0.75								
		0.35 0.26 0.17	0.97	0.93 0.93 0.95	0.90	0.90	0.87	0.87	0.83	0.83	0.80	0.8